#Treatment of Coronavirus Disease 2019 (COVID-19): Investigational Drugs and Other Therapies

Postado em

Investigational treatments for COVID-19 | Review article | Pharmaceutical  Journal

 According to Medscape:



Coronavirus disease 2019 (COVID-19) is defined as illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 2019-nCoV), which was first identified amid an outbreak of respiratory illness cases in Wuhan City, Hubei Province, China. [1It was initially reported to the World Health Organization (WHO) on December 31, 2019. On January 30, 2020, the WHO declared the COVID-19 outbreak a global health emergency. [23On March 11, 2020, the WHO declared COVID-19 a global pandemic, its first such designation since declaring H1N1 influenza a pandemic in 2009. [4

No drugs or biologics have been approved by the FDA for the prevention or treatment of COVID-19. Remdesivir gained emergency use authorization (EUA) from the FDA on May 1, 2020, based on preliminary data showing a faster time to recovery of hospitalized patients with severe disease. [5A new drug application (NDA) for remdesivir was submitted to the FDA in August 2020. An EUA for convalescent plasma was announced on August 23, 2020. [6Numerous other antiviral agents, immunotherapies, and vaccines continue to be investigated and developed as potential therapies. Searching for effective therapies for COVID-19 infection is a complex process. Guidelines and reviews of pharmacotherapy for COVID-19 have been published. [789101112]

The urgent need for treatments during a pandemic can confound the interpretation of resulting outcomes of a therapy if data are not carefully collected and controlled. Andre Kalil, MD, MPH, writes of the detriment of drugs used as a single-group intervention without a concurrent control group that ultimately lead to no definitive conclusion of efficacy or safety. [13]

Rome and Avorn write about unintended consequences of allowing widening access to experimental therapies. First, efficacy is unknown and may be negligible, but, without appropriate studies, physicians will not have evidence on which to base judgement. Existing drugs with well-documented adverse effects (eg, hydroxychloroquine) subject patients to these risks without proof of clinical benefit. Expanded access of unproven drugs may delay implementation of randomized controlled trials. In addition, demand for unproven therapies can cause shortages of medications that are approved and indicated for other diseases, thereby leaving patients who rely on these drugs for chronic conditions without effective therapies. [14]

Drug shortages during the pandemic go beyond off-label prescribing of potential treatments for COVID-19. Drugs that are necessary for ventilated and critically ill patients and widespread use of inhalers used for COPD or asthma are in demand. [1516]

It is difficult to carefully evaluate the onslaught of information that has emerged regarding potential COVID-19 therapies within a few months’ time in early 2020. A brief but detailed approach regarding how to evaluate resulting evidence of a study has been presented by F. Perry Wilson, MD, MSCE. By using the example of a case series of patients given hydroxychloroquine plus azithromycin, he provides clinicians with a quick review of critical analyses. [17]

As an example of the number of compounds being evaluated, Gordon et al identified 332 high-confidence SARS-CoV-2 human protein-protein interactions. Among these, they identified 66 human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials, and/or preclinical compounds. As of March 22, 2020, these researchers are in the process of evaluating the potential efficacy of these drugs in live SARS-CoV-2 infection assays. [18]

How these potential COVID-19 treatments will translate to human use and efficacy is not easily or quickly understood. The question of whether some existing drugs that have shown in vitro antiviral activity might achieve adequate plasma pharmacokinetics with current approved doses was examined by Arshad et al. The researchers identified in vitro anti–SARS-CoV-2 activity data from all available publications up to April 13, 2020, and recalculated an EC90 value for each drug. EC90 values were then expressed as a ratio to the achievable maximum plasma concentrations (Cmax) reported for each drug after administration of the approved dose to humans (Cmax/EC90 ratio). The researchers also calculated the unbound drug to tissue partition coefficient to predict lung concentrations that would exceed their reported EC50 levels. [19]

The NIH Accelerating Covid-19 Therapeutics Interventions and Vaccines (ACTIV) trials public-private partnership to develop a coordinated research strategy has several ongoing protocols that are adaptive to the progression of standard care. [20]

Another adaptive platform trial is the I-SPY COVID-19 Trial for treating critically ill patients. The clinical trial is designed to allow numerous investigational agents to be evaluated in the span of 4-6 months, compared with standard of care (supportive care for ARDS, remdesivir backbone therapy). Depending on the time course of COVID-19 infections across the US. As the trial proceeds and a better understanding of the underlying mechanisms of the COVID-19 illness emerges, expanded biomarker and data collection can be added as needed to further elucidate how agents are or are not working. [21]

The WHO has embarked on an ambitious global “megatrial” called SOLIDARITY in which confirmed cases of COVD-19 are randomized to standard care or one of four active treatment arms (remdesivir, chloroquine or hydroxychloroquine, lopinavir/ritonavir, or lopinavir/ritonavir plus interferon beta-1a). As of July 4, 2020, the treatment arms in hospitalized patients that include hydroxychloroquine, chloroquine, or lopinavir/ritonavir have been discontinued owing to the drugs showing little or no reduction in mortality compared with standard of care. [22]


  • Author: Scott J Bergman, PharmD, FCCP, FIDSA, BCPS, BCIDP; more…


Additional information for investigational drugs and biologics can be obtained from the following resources:

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s